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Mainstay Con-X Science

•Accretion physics•Disks; fluorescence, reverberation 
mapping•Jets, outflows•Energy cycles; Feedback; Magnetic 
reconnection•Relativistic particles, acceleration



Mainstay Con-X Science

•Accretion physics•Disks; fluorescence, reverberation 
mapping•Jets, outflows•Energy cycles; Feedback; Magnetic 
reconnection•Relativistic particles, accelerationAll of these processes can be studied 

in detail in stars using Con-X



Knowing Your X-ray Source

Elvis (2000)

AGN

Cosmic String

Yo-Yo



Outline
•Origins: the formation of stars and 

planets, and their high energy 
environments

•Hot, magnetised plasmas in brown 
dwarfs, main-sequence and evolved stars

•Magnetic flares: prototypes of energy
lifecycles and release (see R. Osten talk 
next)

•Outflows and shocks in massive stars



Origins: The Formation of 
Stars and Planets and their 
High Energy Environments



Origins: The Formation of 
Stars and Planets and their 
High Energy Environments

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.



When do protostars start generating 
X-rays? - Penetrating B-field probe

Hamaguchi et al 
(2006)

• Earliest protostars 
“class 0” ~ 104yrs old
– Cold 103-104AU 

envelope, nascent core, 
collimated outflows, 
jets• X-rays => ionisation 

source, dynamo, 
magnetic fields; link to 
jets?• Difficult to detect; 
RCrA IRS7b best 
evidence to date• Need sensitive Con-X 
surveys >3 keV



Soft Excess in Accreting T Tauris 
(Telleschi et al 2006)

•OVII/O VIII Ly α 
•low in CTTS
•high in WTTS

•separate, excessive 
cool (1-3 MK) 
component in accreting 
TTS

accretion-related cool 
plasma?

T Tau

log NH

WTTS

CTTS



Soft Excess: Probing Accretion Shocks
• TW Hya cool emission from 

ballistic accretion shock 
rather than corona
– direct study of accretion 

process; accreting gas 
composition

• High ne so far only 
detected on 2 other stars
(BP Tau, V4046 Sgr)

• Limits of Chandra and 
XMM sensitivity

• Need R>600 eg to
deblend Ne IX & FeXIX 
(>1000 to distinguish)

WTT

ZAMS

CTT

Chandra
HETG



Soft Excess: X-rays from T Tauri Jets

•X-rays appear to 
be formed in 
shocks from base 
of jet to ~500AU•Vs~300km/s 
(similar to 
accretion 
velocities), 
ne~103-105 cm-3

Guedel et al (2005)

DG Tau A

Need to resolve Ne, O He-like ions --> densities
Need velocity resolution to see ~100 km/s



Con-X Studies of T Tauri 
Accretion and Jets

•Soft excesses appear quite common in T 
Tauri stars• Chandra and XMM-Newton can only reach 
brightest few objects• Jets and accretion have identical 
signatures at low resolution
– Need to resolve Ne, O He-like ions --> densities
– Need velocity information at low E for ~100 km/s to 

probe jet physics



High energy processes & protoplanetary disks

Mag field lines

Dead zone
Ionized MHD

turbulent zone

Cosmic rays

Flare MeV particles

Flare X-rays
Proto-Jupiter

Proto-Earth

Feigelson   2003 [2]



SMA Detection of X-ray Disk Heating
(TW Hya; Qi et al 2006)
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Protoplanetary Disk Fluorescence

• Inner-shell Fe ionisation by X-irradiation ==> 6.4 keV 
FeKα• FeKα sources preferentially deeply embedded with 
near-IR excesses; i.e. very young systems with heavy 
disks• Direct evidence for protoplanetary disk irradiation

Fe K 6.4 keV

Elias 29 (ρ Oph) Favata et al (2005)



QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.



Protoplanetary Disk Fluorescence

• Unlike most AGN,XRB cases, geometry and 
emission mechanisms are  well-constrained• Use to probe inner disk radius, protoplanetary 
gaps during flares• Elias 29 Fe K strength 2x10-6ph/cm2/s quiescent, 
x10 in flare ==> Con-X sees 10 cts/100s in flare



Fe K Disk Fluorescence (Ercolano & Drake 2007)

Monte Carlo simulation of Fe K fluorescence of 
protoplanetary disk illuminated by impulsive flare  



Hot, Magnetised Plasmas in 
Brown Dwarfs, Main-

Sequence and Evolved Stars
•Very low mass stars & brown dwarfs

currently inaccessible to detailed study
– No tachocline; near neutral atmospheres: how 

do dynamos and magnetic activity work? Con-X 
--> B field structure

• Coronal Doppler Imaging: testing dynamo 
models and magnetospheric accretion



(Berger 2006)

Brown Dwarfs as Particle Accelerators

LR/LX shows rapid rise at M7 (Teff ~2600K)
Con-X can provide plasma diagnostics to infer B field properties; 
Are energetic particles related to plasma heating?



Con-X Coronal Doppler Imaging

AB Dor K0 V; Prot=0.5d

>200 km/s



Mid-latitude Structures on FK Com 
(G5 III vsini=160 km/s) (Drake et al 2006)

• Redshift of ~140 km/s indicates mid-latitude 
structure, possibly associated with surface spots

Chandra HETG 50ks
Contemporaneous 

Surface Doppler Image



Testing Ab Initio Magnetised 
Outer Atmosphere Models

•Magnetic structure 
computed from 
surface field 
predicted by “flip-
flop” dynamo model 
(Elstner & Korhonen)• X-ray Doppler 
Imaging will provide 
fundamental tests of 
dynamos and surface 
B field topologyFK Com-like Flip-Flop model



Model Doppler Shifts

Predicted 
velocities just 
within reach of 
Chandra for FK 
Com, but needs 
larger area, 
higher 
resolution for 
Doppler image

QuickTime™ and a
YUV420 codec decompressor

are needed to see this picture.

Doppler shift vs plasma T



Pre-Main Sequence Magnetospheres 
and Star-Disk Interactions

• Optical-UV evidence 
points to
magnetospheric (spot) 
accretion rather than 
boundary layer

• Rotation periods of 
few days==> 
V~100km/s

Montmerle 
et al (2000) Reconnection 

(Flare)

With λ/∆λ >2000 can begin to Doppler image
magnetospheric structures and accretion 



Magnetic Flares: Prototypes of 
Energy Lifecycles and 

Release (see R. Osten talk next)
•Flares still not well-understood
•Observations often violate “standard 

model”
– blueshifts from evaporated plasma too small
– Soft X-rays sometimes seen before hard X-ray 

burst
• Con-X: photometric accuracy, time 

resolution, Fe Kα



Flaring loop oscillations

• Loop oscillations triggered by flare events commonly seen in 
solar corona• Oscillation frequency ==> B, L• 1 event detected on stars, BUT signals will usually be small =>
Con-X effective area (=Yohkoh BCS for Sun) 

TRACE 171 A AT Mic  Mitra-Kraev et al (2005)

Longitudinal slow-mode wave



Outflows and Shocks in Massive Stars
• Chandra+XMM spectra => 

magnetic confinement + 
heating of plasma in 
massive winds --> high 
density shock regimes 
(Schulz et al 2003, Gagne et al 2005)• Seen in young stellar 
clusters
– Impact on star/planet 

formation environment• Colliding wind systems - eg 
M17 (Townsley et al 2004)• Currently area-limited to 
nearest star clusters
– Find these young objects 

in ultra-compact HII 
regions

– Time-dependence from
condensations, 
reconnection…

Gagne et al (2005)



Important requirements for 
Con-X

• PSF --> 5”
– Crowding in star forming regions; source 

confusion; asterospheric imaging, mass loss
• Spectral resolving power >~ 2000 at low 

and high E
– Low E (down to He-like C): Protostellar 

Accretion and Jet physics; Doppler Imaging of 
quiescent coronae, accreting magnetospheres



Some Highlights of Con-X 
High Energy Stellar Physics

•Star formation: T Tauri Accretion, 
Jets, sites of massive star formation•Protoplanetary Disks: heating, 
fluorescence mapping, abundances•Doppler Imaging of magnetized 
plasma; magnetospheric accretion•Magnetic reconnection flares





Scope of High Energy Stellar Physics
•Coronal heating

– an outstanding problem in 
modern astrophysics

•Plasma astrophysics 
– stars provide 

comparatively well-
understood laboratory for 
processes and conditions 
unattainable in the lab



Scope of High Energy Stellar Physics
•Magnetic field 

generation, evolution, 
dissipation

•Stellar Evolution 
– Mass loss, angular 

momentum evolution, 
interior mixing, binaries

CV’s, novae, SN 1a



Scope of High Energy Stellar Physics
•Star and planet formation

– Moderated by magnetic 
activity and energetic 
radiation

•Habitability of 
biospheres (through time)
– Particle and photon 

irradiation



Scope of High Energy Stellar Physics
•Stars provide nearby 

prototypical examples of 
energetic astrophysical 
plasma processes found in 
the more distant and much 
less well-understood X-ray 
universe 
– accretion; jets; radiatively-

driven outflows; magnetic 
reconnection, flares; chemical 
fractionation…



“The widespread astrophysical practice of 
declaring the nature of
active unresolved celestial objects is 

Elvis (2000)

more entertainment than
science.” - Eugene Parker

AGN

Cosmic String

Yo-Yo



Coronal Morphology - Like the Sun?

Schussler & Solanki (1992)

Solar Ω

10xSolar Ω

Visible light Doppler 
imaging of rapidly 
rotating active stars 
reveals large polar spots.

Magnetic flux migrates 
poleward due to Coriolis force 
and meridional flows (Schussler & 
Solanki 1992; Schrijver & Title 2001) 



Con-X Coronal Doppler Imaging
AB Dor: ~25 Myr ZAMS K0 V; Prot=0.5d; vsin i=95km/s

Models
By 

K.Wood et al
(2002)

>200 km/s
Optical Doppler imaging
And Coriolis force ==> B 
Field emerges at poles

45 km/s
Model with significant 
dipolar field suggested by 
Hα “slingshot prominences”
(Collier Cameron et al. 1998)



X-ray Emission Scale Height 
and Disk Heating+Ionization

X-ray scale height 
important for:
disk heating, 
ionization, dead 
zones, planet 
formation, 
migration



Fluorescence flare mapping

•Fe Ka strength depends on flare height, 
angle wrt oberver
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